Antigens Product Name References
  Recombinant Live
  TuberculosisrBCG Prague strain expressing listeriolysin and carries a urease deletion mutationVPM 10021-4
rBCG Tice strain expressing 30 kDa Mtb antigen 85B; phase I completed in U.S..rBCG305-9
Recombinant BCG expressing mutated PfoA and overexpressing antigens 85A, 85B, and Rv3407AERAS-42210-12
Non‐replicating, Mtb strain auxotrophic for lysine and pantothenate; attenuated for secA2Mtb [ΔlysA ΔpanCD ΔsecA2]13-14
Live vaccine based on attenuation of Mtb by stable inactivation by deletion of phoP and fad D26 genesMTBVAC [ΔphoP, Δfad D26]15-19
  rBCG overexpressing chimeric ESAT-6/Ag85A DNA fusion proteinHG856-BCG20-24
  BCG with reduced activity of anti-apoptotic microbial enzymes including SodA, GlnA1,thioredoxin, and thioredoxin reductasepaBCG25
rBCG with limited replication overexpressing the 30 kDa Mtb Antigen 85BrBCG(mbtB)3026
rBCG and rM. smegmatis expressing multiple T and B epitopes of MtbrBCG T+B rM. smegmatis T+B27-30
  Expresses multiple epitopes of Mtb fused to malarial epitopes and antigensrBCG TB-Malaria31
  rBCG Tice strain overexpress the 38 kDa proteinrBCG3832-35
  rBCG Mexico strain overexpress the 38 kDa proteinrBCGMex3834-36
  Recombinant M. bovis BCG overexpressing an Mtb L,D-TranspeptidaserBCG overexpressing L,D-Transpeptidase37
  rM.microti strain overexpress the 30 or 38kDa proteinrM.microti30-rM.microti3833-38
  Hansen's Disease(Leprosy)ICRC bacillus(cultivable leprosy derived mycobacteria probably belonging to M. avium intracellulare complex)ICRC 'anti-leprosy vaccine'39
  BCG (Glaxo, freeze dried)BCG Glaxo40
  Heat-killed armadillo-derived M.leprae (M.leprae-A') + BCG-41
  vaccine prepared from Mycobacterium welchii (M.W.)M.w.42
  BCG + Heat Killed M.leprae-43
  Buruli UlcerBCG-44
  Viral Vectored
  TuberculosisReplication-deficient adenovirus 5 vector expressing Mtb antigen 85AAdAg85A45-49
  Replication-deficient adenovirus 35 vector expressing Mtb antigens 85A, 85B, TB10.4AERAS-402/Crucell Ad3550-53
  Crohn's DiseaseCold Virus and virus used in smallpox vaccine attached to fragment of MAP DNA-J Hermon-Taylor owns Patent for this vaccine
  Recombinant Protein
  TuberculosisRecombinant protein composed of a fusion of Mtb antigens Rv1196 and Rv0125 & adjuvant AS01M72 + AS0154-57
  Adjuvanted recombinant protein composed of Mtb antigens 85B and ESAT-6Hybrid-I+IC3158-62
  Adjuvanted recombinant protein composed of a fusion of Mtb antigens 85B and TB10.4HyVac 4/AERAS‐404,+IC3163-65
  Naturally methylated 21‐kDa purified protein from M.bovis BCGHBHA66-70
  Subunit fusion protein composed of 4 Mtb antigensID93 in GLA-SE adjuvant71-72
30kDa Mtb Ag85B protein purified from rM. Smegmatisr3073-77
  Purified recombinant 85A protein from BCGR32Kda (recombinant 85A)78-81
  Whole Cell, Inactivated or Disrupted
  TuberculosisInactivated whole cell non‐TB mycobacterium; phase III in BCG‐primed HIV+ population completed; reformulation pendingM. vaccae82-86
Whole cell saprophytic non‐TB mycobacteriumMw [M. indicus pranii(MIP)]87-89
Fragmented Mtb cellsRUTI90-94
  TuberculosisChimeric DNA vaccines—Ag85A/Ag85BHG85 A/B20-22
  Live attenuated BCG Danish Strain spray‐dried for nasal administrationSpray‐dried BCGb95
  Mycobacterial lipids with Ac2SGL, a novel glycolipid antigenAc2SGL Diacylated Sulfoglycolipid96
Chimeric DNA vaccines—ESAT‐6/Ag85A; Ag85A/Ag85BHG856A97
  Codon‐optimized heat shock protein from M. leprae, a CpG islandHsp DNA vaccine98-101
Combination of DNA vaccines expressing mycobacterial heat‐shock protein 65 & IL‐12HVJ‐Envelope/HSP65 DNA+IL‐12 DNA102-106
Live attenuated BCG Danish Strain in a novel lipid adjuvant and delivery system for an oral vaccineLiporale‐BCG107-111
Nasal vaccine with man‐capped Arabinomannan oligosaccharide conjugated to Ag85B in Eurocine L3TM adjuvantNasL3/AM85B conjugate112-116
Intra‐nasal heat‐killed whole BCG Copenhagen strain in Eurocine L3TM adjuvantNasL3/HtkBCG(BCG adjuvant)117-119
DNA vaccine plasmid vectors pUMVC6 or pUMVC7 expressing Rv3872, Rv3873, Rv3874, Rv3875 or Rv3619cpUMVC6/7 DNAc120
Heat shock HspC protein antigen complexesT‐BioVax121-122
T cell epitope‐based DNA‐prime/peptide boost vaccineTBVax123-125
  Buruli UlcerDNA Vaccine Encoding Antigen 85A from Mycobacterium bovis BCG-126

1. Grode, L., et al., Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest, 2005. 115(9): p. 2472-9.

2. Kaufmann, S.H., G. Hussey, and P.H. Lambert, New vaccines for tuberculosis. Lancet, 2010. 375(9731): p. 2110-9.

3. Kaufmann, S.H., Envisioning future strategies for vaccination against tuberculosis. Nat Rev Immunol, 2006. 6(9): p. 699-704.

4. Kaufmann, S.H., Future vaccination strategies against tuberculosis: thinking outside the box. Immunity, 2010. 33(4): p. 567-77.

5. Hoft, D.F., et al., A new recombinant bacille Calmette-Guerin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. J Infect Dis, 2008. 198(10): p. 1491-501.

6. Horwitz, M.A. and G. Harth, A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis. Infect Immun, 2003. 71(4): p. 1672-9.

7. Horwitz, M.A., et al., Recombinant bacillus calmette-guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci U S A, 2000. 97(25): p. 13853-8.

8. Horwitz, M.A., et al., A novel live recombinant mycobacterial vaccine against bovine tuberculosis more potent than BCG. Vaccine, 2006. 24(10): p. 1593-600.

9. Horwitz, M.A., et al., Extraordinarily few organisms of a live recombinant BCG vaccine against tuberculosis induce maximal cell-mediated and protective immunity. Vaccine, 2006. 24(4): p. 443-51.

10. Magalhaes, I., et al., rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime-boost setting with an adenovirus 35 tuberculosis vaccine vector. PLoS One, 2008. 3(11): p. e3790.

11. Skeiky, Y.A. and J.C. Sadoff, Advances in tuberculosis vaccine strategies. Nat Rev Microbiol, 2006. 4(6): p. 469-76.

12. Sun, R., et al., Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine, 2009. 27(33): p. 4412-23.

13. Derrick, S.C., et al., Characterization of the protective T-cell response generated in CD4-deficient mice by a live attenuated Mycobacterium tuberculosis vaccine. Immunology, 2007. 120(2): p. 192-206.

14. Sambandamurthy, V.K., et al., Mycobacterium tuberculosis DeltaRD1 DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. Vaccine, 2006. 24(37-39): p. 6309-20.

15. Cardona, P.J., et al., Extended safety studies of the attenuated live tuberculosis vaccine SO2 based on phoP mutant. Vaccine, 2009. 27(18): p. 2499-505.

16. Verreck, F.A., et al., MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS One, 2009. 4(4): p. e5264.

17. Gonzalo-Asensio, J., et al., PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One, 2008. 3(10): p. e3496.

18. Perez, E., et al., An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol, 2001. 41(1): p. 179-87.

19. Martin, C., et al., The live Mycobacterium tuberculosis phoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine, 2006. 24(17): p. 3408-19.

20. Fan, X.Y., et al., A novel differential expression system for gene modulation in Mycobacteria. Plasmid, 2009. 61(1): p. 39-46.

21. Li, Z., et al., Improved humoral immunity against tuberculosis ESAT-6 antigen by chimeric DNA prime and protein boost strategy. DNA Cell Biol, 2006. 25(1): p. 25-30.

22. Li, Z., et al., DNA electroporation prime and protein boost strategy enhances humoral immunity of tuberculosis DNA vaccines in mice and non-human primates. Vaccine, 2006. 24(21): p. 4565-8.

23. Fan, X.Y., et al., Rapid detection of rpoB gene mutations in rifampin-resistant Mycobacterium tuberculosis isolates in shanghai by using the amplification refractory mutation system. J Clin Microbiol, 2003. 41(3): p. 993-7.

24. Fan, X.Y., et al., Recombinant BCG strains under control of MYcobacterium tuberculosis furA promoter induce antigen-specific enhanced Th1 type immune responses. Infect Immun, 2009. Under Review.

25. Sadagopal, S., et al., Reducing the activity and secretion of microbial antioxidants enhances the immunogenicity of BCG. PLoS One, 2009. 4(5): p. e5531.

26. Tullius, M.V., et al., A Replication-Limited Recombinant Mycobacterium bovis BCG vaccine against tuberculosis designed for human immunodeficiency virus-positive persons is safer and more efficacious than BCG. Infect Immun, 2008. 76(11): p. 5200-14.

27. Nor, N.M. and M. Musa, Approaches towards the development of a vaccine against tuberculosis: recombinant BCG and DNA vaccine. Tuberculosis (Edinb), 2004. 84(1- 2): p. 102-9.

28. Norazmi, M.N., M.E. Sarmiento, and A. Acosta, Recent advances in tuberculosis vaccine development. Current Respiratory Medicine Reviews, 2005. 1(2): p. 109-16.

29. Vallin, C., et al., Streptomyces as host for recombinant production of Mycobacterium tuberculosis proteins. Tuberculosis (Edinb), 2006. 86(3-4): p. 198-202.

30. Acosta, A. and M.E. Sarmiento, Proceedings of the International Workshop on Tuberculosis Vaccines May 8-12, 2005, Varadero, Matanzas, Cuba. Tuberculosis (Edinb), 2006. 86(3-4): p. 149-335.

31. Rapeah, S. and M.N. Norazmi, Immunogenicity of a recombinant Mycobacterium bovis bacille Calmette-Guerin expressing malarial and tuberculosis epitopes. Vaccine, 2006. 24(17): p. 3646-53.

32. Castanon-Arreola, M., et al., A new vaccine against tuberculosis shows greater protection in a mouse model with progressive pulmonary tuberculosis. Tuberculosis (Edinb), 2005. 85(1-2): p. 115-26.

33. Castanon-Arreola, M. and Y. Lopez-Vidal, A second-generation anti TB vaccine is long overdue. Ann Clin Microbiol Antimicrob, 2004. 3: p. 10.

34. Castillo-Rodal, A.I., et al., Mycobacterium bovis BCG substrains confer different levels of protection against Mycobacterium tuberculosis infection in a BALB/c model of progressive pulmonary tuberculosis. Infect Immun, 2006. 74(3): p. 1718-24.

35. Rodriguez-Alvarez, M., et al., The secretome of a recombinant BCG substrain reveals differences in hypothetical proteins. Vaccine, 2010. 28(23): p. 3997-4001.

36. Hernandez-Pando, R., et al., Recombinant BCG vaccine candidates. Curr Mol Med, 2007. 7(4): p. 365-72.

37. Nolan, S.T. and G. Lamichhane, Protective efficacy of BCG overexpressing an L,D-transpeptidase against M. tuberculosis infection. PLoS ONE, 2010. 5(10): p. e13773.

38. Flores Rodríguez, T., M. Castañón Arreola, and Y. López Vidal, in 4th Conference Annual on Vaccines: All things considered. 2006: USA.

39. Deo, M.G., ICRC 'anti-leprosy vaccine'. Vaccine, 1989 Apr;7(2):92-3.

40. Pönnighaus., J.M., et al., Efficacy of BCG vaccine against leprosy and tuberculosis in northern Malawi. Lancet. 1992 Mar 14;339(8794):636-9.

41. Gill., H.K., et al., Vaccination of human volunteers with heat-killed M. leprae: local responses in relation to the interpretation of the lepromin reaction. Int J Lepr Other Mycobact Dis. 1988 Mar;56(1):36-44.

42. Chaudhary. S.,et al., Lepromin conversion in repeatedly lepromin negative BL/LL patients after immunization with autoclaved Mycobacterium W. Int J Lepr 1983; 51:159-168.

43. Gelber., R.H., et al., Effective vaccination of mice against leprosy bacilli with subunits of Mycobacterium leprae.Infect Immun. 1990 Mar;58(3):711-8.

44. Nackers, F.,et al., BCG vaccine effectiveness against Buruli ulcer: a case-control study in Benin. Am J Trop Med Hyg. 2006 Oct;75(4):768-74.

45. Santosuosso, M., et al., Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect Immun, 2006. 74(8): p. 4634-43.

46. Santosuosso, M., et al., Mechanisms of mucosal and parenteral tuberculosis vaccinations: adenoviral-based mucosal immunization preferentially elicits sustained accumulation of immune protective CD4 and CD8 T cells within the airway lumen. J Immunol, 2005. 174(12): p. 7986-94.

47. Wang, J., et al., Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J Immunol, 2004. 173(10): p. 6357-65.

48. Vordermeier, H.M., et al., Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect Immun, 2009. 77(8): p. 3364-

49. Xing, Z., et al., Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS One, 2009. 4(6): p. e5856.

50. Magalhaes, I., et al., rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime-boost setting with an adenovirus 35 tuberculosis vaccine vector. PLoS One, 2008. 3(11): p. e3790.

51. Skeiky, Y.A. and J.C. Sadoff, Advances in tuberculosis vaccine strategies. Nat Rev Microbiol, 2006. 4(6): p. 469-76.

52. Abel, B., et al., The Novel TB Vaccine, AERAS-402, Induces Robust and Polyfunctional CD4 and CD8 T Cells in Adults. Am J Respir Crit Care Med, 2010.

53. Radosevic, K., et al., Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping.

54. Leroux-Roels, I., et al., Evaluation of the safety and immunogenicity of two antigen concentrations of the Mtb72F/AS02(A) candidate tuberculosis vaccine in purified protein derivative-negative adults. Clin Vaccine Immunol, 2010. 17(11): p. 1763-71.

55. Von Eschen, K., et al., The candidate tuberculosis vaccine Mtb72F/AS02A: Tolerability and immunogenicity in humans. Hum Vaccin, 2009. 5(7): p. 475-82.

56. Reed, S.G., et al., Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc Natl Acad Sci U S A, 2009. 106(7): p. 2301-6.

57. Skeiky, Y.A., et al., Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol, 2004. 172(12): p. 7618-28.

58. van Dissel, J.T., et al., Ag85B-ESAT-6 adjuvanted with IC31 promotes strong and long-lived Mycobacterium tuberculosis specific T cell responses in naive human volunteers. Vaccine, 2010. 28(20): p. 3571-81.

59. Dietrich, J., et al., Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette-Guerin immunity. J Immunol, 2006. 177(9): p. 6353-60.

60. Langermans, J.A., et al., Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT- 6. Vaccine, 2005. 23(21): p. 2740-50.

61. Olsen, A.W., et al., Efficient protection against Mycobacterium tuberculosis by vaccination with a single subdominant epitope from the ESAT-6 antigen. Eur J Immunol, 2000. 30(6): p. 1724-32.

62. Weinrich Olsen, A., et al., Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85b and esat-6. Infect Immun, 2001. 69(5): p. 2773-8.

63. Dietrich, J., et al., Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J Immunol, 2005. 174(10): p. 6332-9.

64. Hervas-Stubbs, S., et al., High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection. Infect Immun, 2006. 74(6): p. 3396-407.

65. Skeiky, Y.A., et al., Non-clinical efficacy and safety of HyVac4:IC31 vaccine administered in a BCG prime-boost regimen. Vaccine, 2009.

66. Hougardy, J.M., et al., Regulatory T cells depress immune responses to protective antigens in active tuberculosis. Am J Respir Crit Care Med, 2007. 176(4): p. 409-16.

67. Locht, C., The mycobacterial heparin-binding hemagglutinin: a virulence factor and antigen useful for diagnostics and vaccine development, in The Mycobacterial Cell Envelope, M. Daffe and J.M. Reyrat, Editors. 2008, ASM Press: Washington, DC. p. 305-322.

68. Pethe, K., et al., The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature, 2001. 412(6843): p. 190-4.

69. Temmerman, S., et al., Methylation-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin. Nat Med, 2004. 10(9): p. 935-41.

70. Temmerman, S.T., et al., Effector functions of heparin-binding hemagglutinin-specific CD8+ T lymphocytes in latent human tuberculosis. J Infect Dis, 2005. 192(2): p. 226-32.

71. Bertholet, S., et al., A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med, 2010. 2(53): p. 53ra74.

72. Bertholet, S., et al., Identification of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J Immunol, 2008. 181(11): p. 7948-57.

73. Harth, G., B.Y. Lee, and M.A. Horwitz, High-level heterologous expression and secretion in rapidly growing nonpathogenic mycobacteria of four major Mycobacterium tuberculosis extracellular proteins considered to be leading vaccine candidates and drug targets. Infect Immun, 1997. 65(6): p. 2321-8.

74. Harth, G., et al., Novel insights into the genetics, biochemistry, and immunocytochemistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis. Infect Immun, 1996. 64(8): p. 3038-47.

75. Horwitz, M.A., et al., Enhancing the protective efficacy of Mycobacterium bovis BCG vaccination against tuberculosis by boosting with the Mycobacterium tuberculosis major secretory protein. Infect Immun, 2005. 73(8): p. 4676-83.

76. Horwitz, M.A., et al., Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 1995. 92(5): p. 1530-4.

77. Lee, B.Y. and M.A. Horwitz, T-cell epitope mapping of the three most abundant extracellular proteins of Mycobacterium tuberculosis in outbred guinea pigs. Infect Immun, 1999. 67(5): p. 2665-70.

78. Anuradha, B., et al., Interferon-gamma Low producer genotype +874 overrepresented in Bacillus Calmette-Guerin nonresponding children. Pediatr Infect Dis J, 2008. 27(4): p. 325-9.

79. Anuradha, B., et al., Age-related waning of in vitro Interferon-gamma levels against r32kDaBCG in BCG vaccinated children. J Immune Based Ther Vaccines, 2007. 5: p. 8.

80. Sai Priya, V.H., et al., In vitro levels of interleukin 10 (IL-10) and IL-12 in response to a recombinant 32-kilodalton antigen of Mycobacterium bovis BCG after treatment for tuberculosis. Clin Vaccine Immunol, 2009. 16(1): p. 111-5.

81. Sai Priya, V.H., et al., Enhanced T cell responsiveness to Mycobacterium bovis BCG r32-kDa Ag correlates with successful anti-tuberculosis treatment in humans. Cytokine, 2010. 52(3): p. 190-3.

82. Lahey, T., et al., Immunogenicity of a protective whole cell mycobacterial vaccine in HIV-infected adults: a phase III study in Tanzania. Vaccine, 2010. 28(48): p. 7652-8.

83. von Reyn, C.F., et al., Prevention of tuberculosis in Bacille Calmette-Guerin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS, 2010.

84. Lahey, T., et al., Interferon gamma responses to mycobacterial antigens protect against subsequent HIV-associated tuberculosis. J Infect Dis, 2010. 202(8): p. 1265-72.

85. Vuola, J.M., et al., Immunogenicity of an inactivated mycobacterial vaccine for the prevention of HIV-associated tuberculosis: a randomized, controlled trial. AIDS, 2003. 17(16): p. 2351-5.

86. Waddell, R.D., et al., Safety and immunogenicity of a five-dose series of inactivated Mycobacterium vaccae vaccination for the prevention of HIV-associated tuberculosis. Clin Infect Dis, 2000. 30 Suppl 3: p. S309-15.

87. Patel, N., M.M. Deshpande, and M. Shah, Effect of an immunomodulator containing Mycobacterium w on sputum conversion in pulmonary tuberculosis. J Indian Med Assoc, 2002. 100(3): p. 191-3.

88. Patel, N. and S.B. Trapathi, Improved cure rates in pulmonary tuberculosis category II (retreatment) with mycobacterium w. J Indian Med Assoc, 2003. 101(11): p. 680, 682.

89. Talwar, G.P., An immunotherapeutic vaccine for multibacillary leprosy. Int Rev Immunol, 1999. 18(3): p. 229-49.

90. Cardona, P.J., RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis (Edinb), 2006. 86(3-4): p. 273-89.

91. Gil, O., et al., Granuloma encapsulation is a key factor for containing tuberculosis infection in minipigs. PLoS ONE, 2010. 5(4): p. e10030.

92. Gil, O., et al., Enhanced gamma interferon responses of mouse spleen cells following immunotherapy for tuberculosis relapse. Clin Vaccine Immunol, 2008. 15(11): p. 1742-4.

93. Guirado, E., et al., Induction of a specific strong polyantigenic cellular immune response after short-term chemotherapy controls bacillary reactivation in murine and guinea pig experimental models of tuberculosis. Clin Vaccine Immunol, 2008. 15(8): p. 1229-37.

94. Vilaplana, C., et al., Double-blind, randomized, placebo-controlled Phase I Clinical Trial of the therapeutical antituberculous vaccine RUTI((R)). Vaccine, 2009.

95. Garcia-Contreras, L., et al., Immunization by a bacterial aerosol. Proc Natl Acad Sci U S A, 2008. 105(12): p. 4656-60.

96. Gilleron, M., et al., Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J Exp Med, 2004. 199(5): p. 649-59.

97. Li, Z., et al., Immunogenicity of DNA vaccines expressing tuberculosis proteins fused to tissue plasminogen activator signal sequences. Infect Immun, 1999. 67(9): p. 4780-6.

98. Lowrie, D.B., DNA vaccines for therapy of tuberculosis: where are we now? Vaccine, 2006. 24(12): p. 1983-9.

99. Lowrie, D.B., et al., Therapy of tuberculosis in mice by DNA vaccination. Nature, 1999. 400(6741): p. 269-71.

100. Silva, C.L., et al., Immunotherapy with plasmid DNA encoding mycobacterial hsp65 in association with chemotherapy is a more rapid and efficient form of treatment for tuberculosis in mice. Gene Ther, 2005. 12(3): p. 281-7.

101. Vordermeier, H.M., D.B. Lowrie, and R.G. Hewinson, Improved immunogenicity of DNA vaccination with mycobacterial HSP65 against bovine tuberculosis by protein boosting. Vet Microbiol, 2003. 93(4): p. 349-59.

102. Kita, Y., et al., Novel recombinant BCG and DNA-vaccination against tuberculosis in a cynomolgus monkey model. Vaccine, 2005. 23(17-18): p. 2132-5.

103. Okada, M. and Y. Kita, Tuberculosis vaccine development: The development of novel (preclinical) DNA vaccine. Hum Vaccin, 2010. 6(4): p. 297-308.

104. Okada, M., et al., Evaluation of a novel vaccine (HVJ-liposome/HSP65 DNA+IL-12 DNA) against tuberculosis using the cynomolgus monkey model of TB. Vaccine, 2007. 25(16): p. 2990-3.

105. Okada, M., et al., Novel prophylactic and therapeutic vaccine against tuberculosis. Vaccine, 2009. 27(25-26): p. 3267-70.

106. Yoshida, S., et al., DNA vaccine using hemagglutinating virus of Japan-liposome encapsulating combination encoding mycobacterial heat shock protein 65 and interleukin-12 confers protection against Mycobacterium tuberculosis by T cell activation. Vaccine, 2006. 24(8): p. 1191-204.

107. Clark, S., et al., Assessment of different formulations of oral Mycobacterium bovis Bacille Calmette-Guerin (BCG) vaccine in rodent models for immunogenicity and protection against aerosol challenge with M. bovis. Vaccine, 2008. 26(46): p. 5791-7.

108. Cross, M.L., et al., Oral vaccination of mice with lipid-encapsulated Mycobacterium bovis BCG: Effect of reducing or eliminating BCG load on cell-mediated immunity. Vaccine, 2007. 25(7): p. 1297-303.

109. Dorer, D.E., et al., Lymphatic tracing and T cell responses following oral vaccination with live Mycobacterium bovis (BCG). Cell Microbiol, 2007. 9(2): p. 544-53.

110. Tompkins, D.M., et al., Oral vaccination reduces the incidence of tuberculosis in free-living brushtail possums. Proc Biol Sci, 2009. 276(1669): p. 2987-95.

111. Vipond, J., et al., Immunogenicity of orally-delivered lipid-formulated BCG vaccines and protection against Mycobacterium tuberculosis infection. Microbes Infect, 2008. 10(14-15): p. 1577-81.

112. Hamasur, B., et al., Mycobacterium tuberculosis arabinomannan-protein conjugates protect against tuberculosis. Vaccine, 2003. 21(25-26): p. 4081-93.

113. Hamasur, B., G. Kallenius, and S.B. Svenson, A new rapid and simple method for large-scale purification of mycobacterial lipoarabinomannan. FEMS Immunol Med Microbiol, 1999. 24(1): p. 11-7.

114. Hamasur, B., G. Kallenius, and S.B. Svenson, Synthesis and immunologic characterisation of Mycobacterium tuberculosis lipoarabinomannan specific oligosaccharideprotein conjugates. Vaccine, 1999. 17(22): p. 2853-61.

115. Kallenius, G., et al., Mycobacterial glycoconjugates as vaccine candidates against tuberculosis. Trends Microbiol, 2008. 16(10): p. 456-62.

116. Pawlowski, A., G. Kallenius, and S.B. Svenson, A new method of non-cross-linking conjugation of polysaccharides to proteins via thioether bonds for the preparation of saccharide-protein conjugate vaccines. Vaccine, 1999. 17(11-12): p. 1474-83.

117. Haile, M., et al., Nasal boost with adjuvanted heat-killed BCG or arabinomannan-protein conjugate improves primary BCG-induced protection in C57BL/6 mice. Tuberculosis (Edinb), 2005. 85(1-2): p. 107-14.

118. Haile, M., et al., Immunization with heat-killed Mycobacterium bovis bacille Calmette-Guerin (BCG) in Eurocine L3 adjuvant protects against tuberculosis. Vaccine, 2004. 22(11-12): p. 1498-508.

119. Kallenius, G., et al., Should a new tuberculosis vaccine be administered intranasally? Tuberculosis (Edinb), 2007. 87(4): p. 257-66.

120. Hanif, S.N., R. Al-Attiyah, and A.S. Mustafa, DNA vaccine constructs expressing Mycobacterium tuberculosis-specific genes induce immune responses. Scand J Immunol, 2010. 72(5): p. 408-15.

121. Colaco, C.A., et al., BCG (Bacille Calmette-Guerin) HspCs (heat-shock protein-peptide complexes) induce T-helper 1 responses and protect against live challenge in a murine aerosol challenge model of pulmonary tuberculosis. Biochem Soc Trans, 2004. 32(Pt 4): p. 626-8.

122. Walker, K.B., J. Keeble, and C. Colaco, Mycobacterial heat shock proteins as vaccines - a model of facilitated antigen presentation. Curr Mol Med, 2007. 7(4): p. 339-50.

123. De Groot, A.S., et al., Developing an epitope-driven tuberculosis (TB) vaccine. Vaccine, 2005. 23(17-18): p. 2121-31.

124. McMurry, J., et al., Analyzing Mycobacterium tuberculosis proteomes for candidate vaccine epitopes. Tuberculosis (Edinb), 2005. 85(1-2): p. 95-105.

125. McMurry, J.A., et al., Epitope-driven TB vaccine development: a streamlined approach using immuno-informatics, ELISpot assays, and HLA transgenic mice. Curr Mol Med, 2007. 7(4): p. 351-68.

126. Tanghe. A., et al., Protective efficacy of a DNA vaccine encoding antigen 85A from Mycobacterium bovis BCG against Buruli ulcer. Infect Immun. 2001 Sep;69(9):5403-11.